Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2314054, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573654

RESUMO

A cost-effective, scalable ball milling process is employed to synthesize the InGeSiP3 compound with a cubic ZnS structure, aiming to address the sluggish reaction kinetics of Si-based anodes for Lithium-ion batteries. Experimental measurements and first-principles calculations confirm that the synthesized InGeSiP3 exhibits significantly higher electronic conductivity, larger Li-ion diffusivity, and greater tolerance to volume change than its parent phases InGe (or Si)P2 or In (or Ge, or Si)P. These improvements stem from its elevated configurational entropy. Multiple characterizations validate that InGeSiP3 undergoes a reversible Li-storage mechanism that involves intercalation, followed by conversion and alloy reactions, resulting in a reversible capacity of 1733 mA h g-1 with an initial Coulombic efficiency of 90%. Moreover, the InGeSiP3-based electrodes exhibit exceptional cycling stability, retaining an 1121 mA h g-1 capacity with a retention rate of ≈87% after 1500 cycles at 2000 mA g-1 and remarkable high-rate capability, achieving 882 mA h g-1 at 10 000 mA g-1. Inspired by the distinctive characteristic of high entropy, the synthesis is extended to high entropy GaCu (or Zn)InGeSiP5, CuZnInGeSiP5, GaCuZnInGeSiP6, InGeSiP2S (or Se), and InGeSiPSSe. This endeavor overcomes the immiscibility of different metals and non-metals, paving the way for the electrochemical energy storage application of high-entropy silicon-phosphides.

2.
Nanomicro Lett ; 15(1): 63, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899146

RESUMO

Si is considered as the promising anode materials for lithium-ion batteries (LIBs) owing to their high capacities of 4200 mAh g-1 and natural abundancy. However, severe electrode pulverization and poor electronic and Li-ionic conductivities hinder their practical applications. To resolve the afore-mentioned problems, we first demonstrate a cation-mixed disordered lattice and unique Li storage mechanism of single-phase ternary GaSiP2 compound, where the liquid metallic Ga and highly reactive P are incorporated into Si through a ball milling method. As confirmed by experimental and theoretical analyses, the introduced Ga and P enables to achieve the stronger resistance against volume variation and metallic conductivity, respectively, while the cation-mixed lattice provides the faster Li-ionic diffusion capability than those of the parent GaP and Si phases. The resulting GaSiP2 electrodes delivered the high specific capacity of 1615 mAh g-1 and high initial Coulombic efficiency of 91%, while the graphite-modified GaSiP2 (GaSiP2@C) achieved 83% of capacity retention after 900 cycles and high-rate capacity of 800 at 10,000 mA g-1. Furthermore, the LiNi0.8Co0.1Mn0.1O2//GaSiP2@C full cells achieved the high specific capacity of 1049 mAh g-1 after 100 cycles, paving a way for the rational design of high-performance LIB anode materials.

3.
J Chem Phys ; 155(7): 074701, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418937

RESUMO

We studied the dissociation of water (H2O*, with * denoting adspecies) on atomic oxygen (O*)-covered Rh nanoclusters (RhO* ) supported on a graphene film grown on a Ru(0001) surface [G/Ru(0001)] under ultrahigh-vacuum conditions and with varied surface-probe techniques and calculations based on density-functional theory. The graphene had a single rotational domain; its lattice expanded by about 5.7% to match the Ru substrate structurally better. The Rh clusters were grown by depositing Rh vapors onto G/Ru(0001); they had an fcc phase and grew in (111) orientation. Water adsorbed on the Rh clusters was dissociated exclusively in the presence of O*, like that on a Rh(111) single-crystal surface. Contrary to the case on Rh(111)O* , excess O* (even at a saturation level) on small RhO* clusters (diameter of 30-34 Å) continued to promote, instead of inhibiting, the dissociation of water; the produced hydroxyl (OH*) increased generally with the concentration of O* on the clusters. The difference results from more reactive O* on the RhO* clusters. O* on RhO* clusters activated the dissociation via both the formation of hydrogen bonds with H2O* and abstraction of H directly from H2O*, whereas O* on Rh(111)O* assisted the dissociation largely via the formation of hydrogen bonds, which was readily obstructed with an increased O* coverage. As the disproportionation (2 OH* → H2O* + O*) is endothermic on the RhO* clusters but exothermic on Rh(111)O* , OH* produced on RhO* clusters showed a thermal stability superior to that on the Rh(111)O* surface-thermally stable up to 400 K.

4.
Langmuir ; 29(39): 12154-61, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24004041

RESUMO

The liquid drop captured at the capillary end, which is observed in capillary valve and pendant drop technique, is investigated theoretically and experimentally. Because of contact line pinning of the lower meniscus, the lower contact angle is able to rise from the intrinsic contact angle (θ*) so that the external force acting on the drop can be balanced by the capillary force. In the absence of contact angle hysteresis (CAH), the upper contact angle remains at θ*. However, in the presence of CAH, the upper contact angle can descend to provide more capillary force. The coupling between the lower and upper contact angles determines the equilibrium shape of the captured drop. In a capillary valve, the pinned contact line can move across the edge as the pressure difference exceeds the valving pressure, which depends on the geometrical characteristic and wetting property of the valve opening. When CAH is considered, the valving pressure is elevated because the capillary force is enhanced by the receding contact angle. For a pendant drop under gravity, the maximal capillary force is achieved as the lower contact angle reaches 180° in the absence of CAH. However, in the presence of CAH, four regimes can be identified by three critical drop volumes. The lower contact angle can exceed 180°, and therefore the drop takes on the shape of a light bulb, which does not exist in the absence of CAH. The comparisons between Surface Evolver simulations and experiments are quite well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...